product-cordial index and friendly index of regular graphs

نویسندگان

wai chee shiu

kwong harris

چکیده

let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of a graph $g$, the friendly index of $g$ under $f$ is defined by $i^+_f(g) = e_{f^+}(1)-e_{f^+}(0)$. the set ${i^+_f(g) | f is a friendly labeling of g}$ is called the full friendly index set of $g$. also, the product-cordial index of $g$ under $f$ is defined by $i^*_f(g) = e_{f^*}(1)-e_{f^*}(0)$. the set ${i^*_f(g) | f is a friendly labeling of g}$ is called the full product-cordial index set of $g$. in this paper, we find a relation between the friendly index and the product-cordial index of a regular graph. as applications, we will determine the full product-cordial index sets of torus graphs which was asked by kwong, lee and ng in 2010; and those of cycles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On friendly index sets of 2-regular graphs

Let G be a graph with vertex set V and edge set E , and let A be an abelian group. A labeling f : V → A induces an edge labeling f ∗ : E → A defined by f (xy) = f (x) + f (y). For i ∈ A, let v f (i) = card{v ∈ V : f (v) = i} and e f (i) = card{e ∈ E : f (e) = i}. A labeling f is said to be A-friendly if |v f (i)−v f ( j)| ≤ 1 for all (i, j) ∈ A× A, and A-cordial if we also have |e f (i) − e f (...

متن کامل

Wiener Polarity Index of Tensor Product of Graphs

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...

متن کامل

Full friendly index sets of cylinder graphs

Let G = (V,E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f : E → Z2 defined by f(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef(i) = |(f+)−1(i)|. A labeling f is called friendly if |vf (1) − vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = ef (1) − ef(0). The set {if(G) | f is a...

متن کامل

Harary index of product graphs

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , whereKm0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for th...

متن کامل

d-Regular Graphs of Acyclic Chromatic Index

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and earlier by Fiamcik) that a′(G)≤ +2, where = (G) denotes the maximum degree of the graph. Alon e...

متن کامل

degree distance and gutman index of corona product of graphs

in this paper, the degree distance and the gutman index of the corona product of two graphs are determined. using the results obtained, the exact degree distance and gutman index of certain classes of graphs are computed.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 1

شماره 1 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023